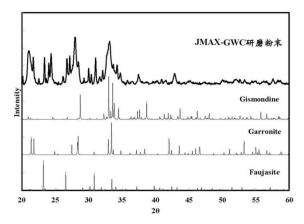

Nuclear Energy Institute Atomic Energy Council of Taiwan

"Application JMAX-GWC adsorption of radioactive Cs and Sr study" Technical Services Case Closing Streamline Reporting

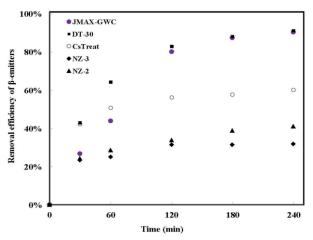

Client: Hearty Biotechnology CO., LTD. 合締生物科技有限公司

> Report Date : June 9, 2014 Responsible only to the sample test results, this report may not be used for commercial purposes.

JMAX-GWC Physical Characteristics:

Pic.1 JMAX-GWC Electron microscope at a magnification of 40 times the surface patterns

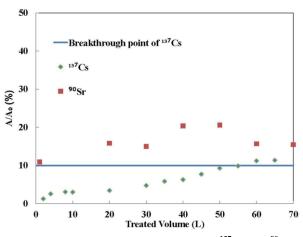
Pic 2 JMAX-GWC ground powder XRD analysis and other reference material ratio on the map


Tab. 1 JMAX-GWC Physical Characteristics

Particle size	1.0~3.0 mm
Particle density (g/mL)	1.51
Bed density (g/mL)	0.66
Color	white gray
BET specific surface area $(m2/g)$	112
Cs+ Adsorption capacity (mg/g)	45.66
Sr2+ Adsorption capacity (mg/g)	35.34

Different materials and JMAX-GWC adsorption rate of ¹³⁷Cs and ⁹⁰Sr:DT-30 in there fast adsorption rate, JMAX-GWC followed, in order, is CsTreat, Nitto zeolite No.2 (NZ-2) and No.3 (NZ-3).

Tab.2 Different materials in 4hrs of total beta activity concentration in water removal efficiency


Material	Removal efficiency of β-emitters at 240 min. (%)
JMAX-GWC	90.4
DT-30	91.1
Cs-Treat	60.1
NZ-2	41.1
NZ-3	31.7

Pic 3 Different materials with time on total beta activity concentration in water removal efficiency(1.0 g sorbent immersed in 100 mL of mineral water containing ¹³⁷Cs and ⁹⁰Sr activity concentration of about 3000 and 100 Bq / mL)

Continuous string instruction argument Study: Retention Time: When its retention time is too short, the liquid and the contact time is less than JMAX-GWC low adsorption efficiency, with the increase of the residence time, which increases efficiency, When the residence time is greater than 1.5 mins.after gradually leveled off its adsorption efficiency not change much. JMAX-GWC for ¹³⁷Cs and ⁹⁰Sr removal efficiency reached 98% and 85%. Adsorbent bed height: Of ¹³⁷Cs and 90Sr in terms of the bed height in the range 1.6 to 16cm this adsorption efficiency did not cause a significant impact, but the bed height 16 cm when the removal efficiency of ⁹⁰Sr may be raised to 90%.

Through the curve: JMAX-GWC loading of 10 g (flow to 10.27 mL / min), and define when ¹³⁷Cs activity ratio of water and raw water activity of the (A / A0) greater than 10%, or break out through the point. After about 55 liters of water, ¹³⁷Cs break through the point where the total inflow ¹³⁷Cs activity was 1.81×108 Bq, and ¹³⁷Cs activity adsorbed about 1.72×108 Bq. For ⁹⁰Sr, since its low concentration, A / A0 no significant change after treatment of 70 L of water. After 70 liters of treated water per gram JMAX-GWC totally adsorbed ⁹⁰Sr 2.33×107 Bq of ¹³⁷Cs and 5.34×105 Bq.

Pic. 4 10 g JMAX-GWC adsorption of ¹³⁷Cs and ⁹⁰Sr curve through (10.27 ml / min, ¹³⁷Cs activity conc. starting ~ 3320 Bq / mL, ⁹⁰Sr initial activity conc. ~ 110 Bq / mL)